Abstract

Hierarchically hollow nanostructures have been the focus of numerous studies due to their prominent physicochemical properties that differ significantly from bulk materials and their potential for extensive applications. We present a novel diatom-based scaffold for the synthesis of hierarchically biomorphic CeO2 with special porous structure via incorporating Ce ions into the frustule. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption measurements were adopted to characterize the products. Owing to its unique hierarchical structure and periodic meso-macro scale features, the obtained CeO2 exhibits high catalytic activity in CO oxidation. This facile strategy may design a new way towards replicating desired biological structures for metal oxide catalyst in other potential applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.