Abstract

Wearable superwettable surfaces with dynamic tunable wettability and self-healability are promising for advanced wearable electronics, whereas have been rarely reported. Herein, a flexible superhydrophobic shape memory film (SSMF) with switchable surface wettability and high strain sensitivity has been conveniently fabricated. The surface topography of the SSMF can be finely adjusted by a reversible stretching (bending)/recovery way, which makes it feasible to control the surface-switchable adhesive superhydrophobicity by simple body movements, demonstrating great advantages in selective droplet manipulation and smart control of droplet movement. Moreover, benefitting from the hierarchical micro/nanostructures and outstanding sensing performance, the flexible SSMFs with good adaptivity and durability can serve as smart wearable sensors attached to human skin to achieve full-range and real-time detection of human motions and intelligent control of Internet of Things. More interestingly, the unique dynamic dewetting property enables the sensors to work in a humid environment or rainy days. Overall, this work successfully integrates dynamic tunable superwettability into design of intelligent wearable electronics with multifunctions. The obtained SSMF-based wearable surface with dynamic dewetting properties reveals great potential in versatile application fields such as liquid-repellent electronics, wearable droplet manipulators, and all-weather intelligent actuators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.