Abstract

Vegetable oils, consisting principally of triacylglycerols (TAG), are major sources of calories and essential fatty acids in the human diet. The fatty acid composition of TAG is a primary determinant of the nutritional quality and health-promoting properties of vegetable oils. TAG fatty acid composition also affects the functionality and properties of vegetable oils in food applications and in food processing and preparation. Vegetable oils with improved nutritional and functional properties have been developed for oilseed crops by selection and breeding of fatty acid biosynthetic mutants. These efforts have been effective at generating vegetable oils with altered relative amounts of saturated and unsaturated fatty acids in seed TAG, but are constrained by insufficient genetic diversity for producing oils with “healthy” fatty acids that are not typically found in major oilseeds. The development and application of biotechnological tools have instead enabled the generation of oilseeds that produce novel fatty acid compositions with improved nutritional value by the introduction of genes from alternative sources, including plants, bacteria, and fungi. These tools have also allowed the generation of desired oil compositions that have proven difficult to obtain by breeding without compromised performance in selected oilseed crops. Here, we review biotechnological tools for increasing crop genetic diversity and their application for commercial or proof-of-principal development of oilseeds with expanded utility for food and feed applications and higher value nutritional and nutraceutical markets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call