Abstract

Filamentous fungi possess the metabolic capacity to degrade environment organic matter, much of which is the plant and algae material enriched with the cell wall carbohydrates and polyphenol complexes that frequently can be assimilated by only marine fungi. As the most renewable energy feedstock on the Earth, the plant or algae polymeric substrates induce an expression of microbial extracellular enzymes that catalyze their cleaving up to the component sugars. However, the question of what the marine fungi contributes to the plant and algae material biotransformation processes has yet to be highlighted sufficiently. In this review, we summarized the potential of marine fungi alternatively to terrestrial fungi to produce the biotechnologically valuable extracellular enzymes in response to the plant and macroalgae polymeric substrates as sources of carbon for their bioconversion used for industries and bioremediation.

Highlights

  • Marine fungi are widely distributed microorganisms in the ocean, associated with sediment, seawater, marine habitants, submerged plants, and algae

  • The results showed that 16 β-glucosidases of the GH1, and 6 glucan β-1,3-glucosidases of the GH5 family involved in cell wall biogenesis/degradation was significantly up-regulated

  • Since some seagrasses and macroalgae showed up to 40% xylan or fuco-glucuronoxylans of the polysaccharide content, it was suggested the marine bacteria and fungi associated with them could evolve the efficient mechanisms for xylan degradation at the genetic and/or molecular levels (Kraan, 2012; Del-Cid et al, 2014; Dos Santos et al, 2016)

Read more

Summary

Introduction

Marine fungi are widely distributed microorganisms in the ocean, associated with sediment, seawater, marine habitants, submerged plants, and algae. For the same reason, the sequenced marine strain Scopulariopsis brevicaulis LF580 growing on alginate or ulvans as the sole carbon source does not have any known families of algae polysaccharide-degrading enzymes such as alginate lyases (PL7,-15,-17) or ulvan lyases (PL24,-25) (Supplementary Tables 1, 2a,b).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.