Abstract
Influenza viruses bind to their target through a multivalent interaction of their hemagglutinins (HAs) with sialosides at the host cell surface. To fight the virus, one therapeutic approach consists in developing sialylated multivalent structures that can saturate the virus HAs and prevent the binding to host cells. We describe herein the biotechnological production of sialylated solid lipid microparticles (SSLMs) in 3 steps: (i) a microbiological step leading to the large-scale production of sialylated maltodextrins by metabolic engineering of an Escherichia coli strain, (ii) a new in vitro glycosylation process using the amylomaltase MalQ, based on the transglycosylation of the terminal sialoside ligand of the sialylated maltodextrin onto a long-chain alkyl glucoside, and (iii) the formulation of the final SSLMs presenting a multivalent sialic acid. We also describe the morphology and structure of the SSLMs and demonstrate their very promising properties as influenza virus inhibitors using hemagglutination inhibition and microneutralization assays on the human A/H1N1 pdm09 virus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.