Abstract

Microbial conversion is an important technology for the refinement of renewable resources. Here, we describe the biotechnological conversion of glycerol to 2-amino-1,3-propanediol (serinol), a relevant intermediate in several chemical syntheses processes. Either the dihydroxyacetone phosphate aminotransferase/dihydrorhizobitoxine synthase (RtxA) of Bradyrhizobium elkanii USD94 or only the N-terminal domain (RtxA513) comprising the first reaction, respectively, was expressed in recombinant Escherichia coli. Serinol contents of up to 3.3 g/l were achieved in batch cultures. We could further clarify that glutamic acid is the preferred cosubstrate for the transamination of dihydroxyacetone phosphate to serinolphosphate, which is the essential step in serinol synthesis. An in vivo detoxification of serinol employing wax ester synthase/acyl-CoA:diacyl-glycerol acyl transferase from Acinetobacter baylyi ADP1 was not accomplished. This study paves the way for biotechnological production of serinol from glycerol derived from the biodiesel industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.