Abstract
Abstract Characterizing seismic wave propagation in a fluid-saturated porous media well enhances the precision of interpreting seismic data, bringing benefits to understanding reservoir properties better. Some important indicators, including wave dispersion and attenuation, along with the wavefield, are widely used for interpreting the reservoir, and they can be obtained from a rock physics model. In existing models, some of them are limited in scope due to their complexity, for example, numerical solutions are difficult or costly. In view of this, this study proposes an approach of establishing equivalent dynamic equations of existing models. First, the framework of the equivalent model is derived based on Biot's theory, while the elastic coefficients are set as unknown factors. The next step is to use deep neural networks (DNNs) to predict these coefficients, and surrogate models of unknowns are established after training DNNs. The training data is naturally generated from the original model. The simplicity of the equation forms, compared to the original complex model and some other equivalents such as the viscoelastic model, enables the framework to perform wavefield simulation easier. Numerical examples show that the established equivalent model can not only predict similar dispersion and attenuation, but also obtain wavefields with small differences. This also indicates that it may be sufficient to establish an equivalent model only according to dispersion and attenuation, and the cost of generating such data is very small compared to simulating the wavefield. Therefore, the proposed approach is expected to effectively improve the computational difficulty of some existing models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.