Abstract

We propose that variation in the responses of carbon-based secondary compounds to fertilization in woody plants has a biosynthetic cause. The synthesis of phenylpropanoids and derived compounds (e.g., condensed tannins) competes directly with the synthesis of proteins, and therefore with plant growth, because of a common precursor, phenylalanine. In contrast, the biosynthesis of terpenoids and of hydrolyzable tannins proceeds presumably without direct competition with protein synthesis. Therefore, accelerated plant growth induced by fertilization may cause a reduction in concentrations of phenylpropanoids but may affect less or not at all the levels of other classes of secondary compounds. A meta-analysis based on fertilization experiments with 35 woody plant species supported the predicted differences fertilizing significantly decreased concentrations of phenylpropanoids but not of terpenoids or hydrolyzable tannins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.