Abstract
Isolated guinea pig liver microsomal membranes catalyzed the incorporation of naturally occurring cis-parinaric acid into sn-3-[U-14C]glycerophosphate. This resulted in the formation of sn-3-[14C](parinaroyl)phosphatidic acid, which was isolated by Chelex-100 and DEAE-cellulose column chromatography and further purified by Sephadex-G 25. The sn-3-[14C](parinaroyl)phosphatidic acid thus obtained exhibited absorption and fluorescence spectra substantially different from the cis-parinaric acid. Distribution of the incorporated cis-parinaric acid between the hydroxyl groups of biosynthesized sn-3-[14C]phosphatidic acid was determined by degradation with Crotalus adamanteus venom. This established that the major portion of the incorporated cis-parinaric acid esterified the secondary hydroxyl group in the sn-3-[14C]phosphatidic acid, while the primary hydroxyl group was esterified to a significantly lesser degree. The similarity between the biochemical incorporation of isomeric doxyl stearic acids into lipids of biological membranes and that of cis-parinaric acid into sn-3-phosphatidic acid described in this communication are discussed in relation to the possible use of these probes in studies of intact biological membranes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.