Abstract

The present study reports the biosynthesis of silver nanoparticles (AgNPs) using Bacillus amyloliquefaciens MSR5. The cellfree supernatant of B. amyloliquefaciens acted as a stabilizing agent for the synthesis of AgNPs. The synthesized AgNPs were characterized using UV-vis spectrophotometer, PXRD, FTIR, SEM-EDX, DLS, and TEM. TEM image showed the spherical shape of the biosynthesized AgNPs and it was found to be 20-40 nm in range. In this study, the AgNPs were prepared by ultrasonic irradiation. The stability of the AgNPs was found to be -33.4 mV using zeta potential. The catalytic 4-nitrophenol (4-NP) degradation by AgNPs was examined under solar irradiation and furthermore, the effects of several degradation parameters were studied. The biosynthesized AgNPs exhibited a strong chemocatalytic action with a comprehensive degradation (98%) of 4-NP to 4-aminophenol (4-AP) using NaBH4 within 15 min. In addition, MTT assay was performed to evaluate the cytotoxicity of the biosynthesized AgNPs (10 – 200 μg). The results have shown that the AgNPs exhibited significant activity on A549 cells, which was dosedependent. The study elucidates the AgNPs synthesized using cellfree culture supernatant can be used for the elimination of hazardous pollutants from wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call