Abstract

Medical devices are essential for patient care, but they can also serve as havens for dangerous microbes and the development of biofilm, which can lead to serious infections and higher death rates. To meet these issues, it is crucial to develop novel and effective antimicrobial coatings for medical devices. In this context, we have developed a new biofunctionalized nanosilver (ICS-Ag), employing itaconyl-chondroitin sulfate nanogel (ICSNG) as a synergistic reducing and stabilizing agent, to effectively eradicate microbial infections and biofilm formation. The antibacterial investigations showed that ICS-Ag nanocomposite is an intriguing antibiotic with excellent antibacterial indices (MIC/MBC (μg/mL): 2.29/4.58, 1.25/2.50, and 1.36/1.36 against S. aureus, E. coli, and P. aeruginosa, respectively), as well as antifungal capacity. Furthermore, ICS-Ag demonstrated efficacy superior to that of the antibiotic (ciprofloxacin, Cipro) against both Gram-positive and Gram-negative bacterial biofilms. TEM images of untreated and treated bacterial strains demonstrate synergistic actions that harm the bacterial cytomembrane, leading to the release of intracellular contents and bacterial death. Interestingly, ICS-Ag shows excellent biocompatibility, with an IC50 value (71.25 μg/mL) higher than MICs against tested microbes. Overall, the ICS-Ag film may provide multifunctional antimicrobial coatings for medical equipment to reduce microbial contamination and biofilm development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.