Abstract

Biosynthesized nanoparticles have played vital role recently, as suggested to be alternative to physical and chemical methods. In this study, biosynthesis of zinc oxide nanoparticles (ZnO NPs) were carried out using leaf extracts of Phoenix dactylifera L. and Zinc nitrate. The effect of ZnO nanoparticles on biomass and biochemical parameters was investigated. Biosynthesized ZnO nanostructure was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–visible spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Which resulted in spherical shape with size ranging between 16 to 35 nm of Biosynthesized ZnO nanoparticles and UV absorption beak at 370.5 nm with clear peaks of functional groups. The impact of different concentrations (0.0 mg/L, 80 mg/L and 160 mg/L) of biosynthesized ZnO nanoparticles on biomass and bioactive compounds production of Juniperus procera in vitro was investigated. The results showed that, biosynthesized ZnO NPs (80 mg/L and 160 mg/L) concentrations were boosted the growth of J. Procera with significantly compared to non-treated plants in vitro. The highest concentration (160 mg/L) of ZnO NPs was enhanced the growth of plant at beginning period, one month later shoots became yellow and callus turned to be brownish. Moreover, the influence of ZnO NPs on phytochemical compounds in callus of Juniperus procera was examined using GC–MS analysis. The differences among treatments were recoded. Overall, zinc oxide nanoparticles substantially improved the growth of shoots and callus with increasing of biochemical parameters such as chlorophyll a, total phenolic and flavonoids contents, besides the total protein and, SOD, CAT and APX activity. ZnO NPs might be induced some phytochemical compounds as well as inhibit.

Highlights

  • Callus growth and pointed out the nanoparticles role in regeneration, decontamination, organogenesis, callus induction and activated a protein that has a vital role in growth recounted ­by[14,15]

  • The biosynthesized ZNO powder was dissolved in Milli-Q water to detected the UV-Visible spectra by using SHIMADZU SPECTROPHOTOMETER (UV-1800) in the range of 200–800 nm

  • The Fourier transmission infrared (FTIR) analysis was performed to identified the chemical groups presented in the biosynthesized ZnO nanostructure

Read more

Summary

Introduction

Callus growth and pointed out the nanoparticles role in regeneration, decontamination, organogenesis, callus induction and activated a protein that has a vital role in growth recounted ­by[14,15]. Plants produce secondary metabolites as a protection mechanism. Secondary metabolites can be produced and improved using micro propagation technique which is a reliable approach. There are no reports to date involving zinc oxide nanoparticles effect on biomass and bioactive compounds of J. The main objective of the present study was to synthesis zinc oxide nanoparticles biologically, and to investigate their effect on biomass and bioactive compounds production from Juniperus procera in vitro. In this present study different characterization techniques such as TEM, XRD, FTIR and UV–Visible were used to investigate the formation of ZnO nanoparticles. Procera in vitro was tested by the estimation of the total protein content and enzymes activity, and total phenolic content, flavonoids, and bioactive compounds

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call