Abstract

Mineralization has been observed in osteoarthritic cartilage but the mechanisms are incompletely understood. Vitamin K is an essential cofactor in post-translational modification of proteins where specific Glu residues become modified to Ca(++) binding gamma-carboxyglutamic acid residues (Gla). One such protein, matrix Gla protein (MGP), is a known mineralization inhibitor. This study determined if synthesis of MGP and formation of a fetuin-MGP protein complex was altered in chondrocytes and vesicles from osteoarthritis (OA) cartilage. Chondrocytes and vesicles were isolated from normal and OA human articular cartilage and lysates prepared. Specific antibodies were used in immunoblotting to detect the mature fully gamma-carboxylated form of MGP (cMGP) and non-gamma-carboxylated MGP (ucMGP) as well as fetuin and MGP-fetuin complexes. gamma-carboxylase activity was measured by (14)CO(2) incorporation into the carboxylase peptide substrate FLEEL. Immunocytochemistry was used to examine fetuin in cartilage sections and uptake of biotin-labeled fetuin by isolated chondrocytes. Chondrocytes and vesicles from osteoarthritic tissue produced significantly less cMGP compared to those from normal cartilage. This correlated with significantly less vitamin K-dependent gamma-carboxylase enzyme activity in OA chondrocytes. Fetuin was found to be present in articular cartilage and cultured chondrocytes were capable of fetuin uptake. A fetuin-MGP complex was identified in normal chondrocytes and in vesicles shed from these cells but not in OA cells or vesicles. The absence of cMGP and of the cMGP-fetuin complex in OA cells and OA vesicles may be an important mechanism for increased mineralization of osteoarthritic cartilage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.