Abstract

The aminocoumarin antibiotic clorobiocin contains an unusual branched deoxysugar with a 5,5-gem-dimethyl structure. Inactivation of the putative C-methyltransferase gene cloU was carried out, which led to the loss of the axial methyl group at C-5 of this deoxysugar moiety. This result establishes the function of cloU, and at the same time it proves that the biosynthesis of the deoxysugar moiety of clorobiocin proceeds via a 3,5-epimerization of the dTDP-4-keto-6-deoxyglucose intermediate. The inactivation was carried out on a cosmid which contained the entire clorobiocin biosynthetic gene cluster. Expression of the modified cluster in a heterologous host led to the formation of desmethyl-clorobiocin and a structural isomer thereof. Both compounds were isolated on a preparative scale, their structures were elucidated by 1H-NMR and mass spectroscopy and their antibacterial activity was assayed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.