Abstract

The biosynthesis of the pyrimidinyl amino acid lathyrine by seedlings of Lathyrus tingitanus L. was shown to be stimulated by uracil. [6(-14)C]Orotate, [2(-14)C]uracil and [3(-14)C]serine were incorporated into lathyrine; the incorporation of [6(-14)C]orotate was substantially decreased in the presence of uracil. Chemical degradation to locate the 14C incorporated from labelled precursors showed that 90% of the radioactivity incorporated into lathyrine from [3(-14)C]serine could be recovered in the alanine side chain. Over 80% of the radioactivity incorporated from [2(-14)C]uracil was shown to be located in C-2 of lathyrine. It is concluded that under the conditions studied, lathyrine arises from a preformed pyrimidine arising via the orotate pathway. Paradoxically, it was also possible to confirm previous reports that radioactivity from L-[guanidino-14C]homoarginine is incorporated into lathyrine and gamma-hydroxyhomoarginine. However, as homoarginine and gamma-hydroxyhomoarginine are also both labelled by [2(-14)C]uracil, it is suggested that they are products of the ring-opening of lathyrine and that reversibility of this process accounts, at least in part, for their observed experimental incorporation into lathyrine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call