Abstract

Genetic analyses have suggested that the pyrimidine moiety of thiamine can be synthesized independently of the first enzyme of de novo purine synthesis, phosphoribosylpyrophosphate amidotransferase (PurF), in Salmonella typhimurium. To obtain biochemical evidence for and to further define this proposed synthesis, stable isotope labeling experiments were performed with two compounds, [2-13C]glycine and [13C]formate. These compounds are normally incorporated into thiamine pyrophosphate (TPP) via steps in the purine pathway subsequent to PurF. Gas chromatography-mass spectrometry analyses indicated that both of these compounds were incorporated into the pyrimidine moiety of TPP in a purF mutant. This result clearly demonstrated that the pyrimidine moiety of thiamine was being synthesized in the absence of the PurF enzyme and strongly suggested that this synthesis utilized subsequent enzymes of the purine pathway. These results were consistent with an alternative route to TPP that bypassed only the first enzyme in the purine pathway. Experiments quantitating cellular thiamine monophosphate (TMP) and TPP levels suggested that the alternative route to TPP did not function at the same capacity as the characterized pathway and determined that levels of TMP and TPP in the wild-type strain were significantly altered by the presence of purines in the medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.