Abstract
The biosynthesis of the manumycin group antibiotics manumycin (1) and asukamycin (2) was studied in Streptomyces parvulus Tue 64 and Streptomyces nodosus ssp. asukaensis ATCC 29,757 by using radioactive and stable isotope tracer techniques and high-field NMR spectroscopy. The results have demonstrated that the central, multifunctional mC{sub 7}N unit typical of this group of antibiotics, which serves as the starter unit for a short polyketide chain, is biosynthesized from a C{sub 4} Krebs cycle and a C{sub 3} triose phosphate pool intermediate by a new pathway, distinct from the shikimate, polyketide, or pentose phosphate routes leading to other mC{sub 7}N units in nature. The C{sub 5} unit in both 1 and 2 arises by a novel intramolecular cyclization of 5-aminolevulinic acid, and a cyclohexane ring and the adjacent carbon in 2 arise from the seven carbon atoms of shikimic acid. The side chains of both antibiotics represent typical polyketide-derived moieties, differing with respect to their combinations of starter and elongation units.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.