Abstract

Barley (Hordeum vulgare L.) produces five leucine-derived hydroxynitrile glucosides (HNGs), of which only epiheterodendrin is a cyanogenic glucoside. The four non-cyanogenic HNGs are the β-HNG epidermin and the γ-HNGs osmaronin, dihydroosmaronin and sutherlandin. By analyzing 247 spring barley lines including landraces and old and modern cultivars, we demonstrated that the HNG level varies notably between lines whereas the overall ratio between the compounds is constant. Based on sequence similarity to the sorghum (Sorghum bicolor) genes involved in dhurrin biosynthesis, we identified a gene cluster on barley chromosome 1 putatively harboring genes that encode enzymes in HNG biosynthesis. Candidate genes were functionally characterized by transient expression in Nicotiana benthamiana. Five multifunctional P450s, including two CYP79 family enzymes and three CYP71 family enzymes, and a single UDP-glucosyltransferase were found to catalyze the reactions required for biosynthesis of all five barley HNGs. Two of the CYP71 enzymes needed to be co-expressed for the last hydroxylation step in sutherlandin synthesis to proceed. This observation, together with the constant ratio between the different HNGs, suggested that HNG synthesis in barley is organized within a single multi-enzyme complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.