Abstract
The biosynthesis of the furanic labdane diterpene marrubiin has been studied in plantlets and shoot cultures of Marrubium vulgare (Lamiaceae). The use of [2-14C]acetate, [2-14C]pyruvate, [2-14C]mevalonic acid and [U-14C]glucose incorporation experiments showed that the labelling of sterols in etiolated shoot cultures of M. vulgare was in accordance with their biosynthesis via the acetate-mevalonate pathway. In contrast, the incorporation rates of these precursors into the diterpene marrubiin could not be explained by biosynthesis of this compound via the acetate-mevalonate pathway. Cultivation of etiolated shoot cultures of M. vulgare on medium containing [1-13C]glucose and subsequent 13C-NMR spectroscopy of marrubiin led to the conclusion that the biosynthesis of marrubiin follows a non-mevalonate pathway. All isoprenic units of 13C-labelled marrubiin were enriched in those carbons that correspond to positions 1 and 5 of a putative precursor isopentenyl diphosphate. This labelling pattern from [1-13C]glucose is consistent with an alternative pathway via trioses, which has already been shown to occur in Eubacteria and Gymnospermae. The labdane skeleton is a precursor of many other skeletal types of diterpenes. Therefore it becomes obvious that in connection with the few known examples of a non-mevalonate pathway to isoprenoids the formation of some isoprenoids in plants via a non-mevalonate pathway might be quite common.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.