Abstract

NifQ- and Mol- mutants of Klebsiella pneumoniae show an elevated molybdenum requirement for nitrogen fixation. Substitution of cystine for sulfate as the sulfur source in the medium reduced the molybdenum requirement of these mutants to levels required by the wild type. Cystine also increased the intracellular molybdenum accumulation of NifQ- and Mol- mutants. Cystine did not affect the molybdenum requirement or accumulation in wild-type K. pneumoniae. Sulfate transport and metabolism in K. pneumoniae were repressed by cystine. However, the effect of cystine on the molybdenum requirement could not be explained by an interaction between sulfate and molybdate at the transport level. Cystine increased the molybdenum requirement of Mol- mutants for nitrate reductase activity by at least 100-fold. Cystine had the same effect on the molybdenum requirement for nitrate reductase activity in Escherichia coli ChlD- mutants. This shows that cystine does not have a generalized effect on molybdenum metabolism. Millimolar concentrations of molybdate inhibited nitrogenase and nitrate reductase derepression with sulfate as the sulfur source, but not with cystine. The inhibition was the result of a specific antagonism of sulfate metabolism by molybdate. The effects of nifQ and mol mutations on nitrogenase could be suppressed either by the addition of cystine or by high concentrations of molybdate. This suggests that a sulfur donor and molybdenum interact at an early step in the biosynthesis of the iron-molybdenum cofactor. This interaction might occur nonenzymatically when the levels of the reactants are high.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call