Abstract
The synthesis of storage proteins in ripening Agrostemma githago seeds was studied by in vivo pulse and pulse-chase experiments with labeled amino acids and labeled glucosamine. It was found that storage proteins were not synthesized directly, but via cleavage of several large precursor proteins. Two disulfide-linked proteins of 38 and 25 kilodaltons were synthesized via a single large precursor protein. This precursor protein contained internal disulfide bridges, at least one of which is involved in holding the subunit structure together following cleavage of the precursor. A similar mode of biosynthesis was noted for two other disulfide-linked proteins of 36 and 22 kilodaltons. The half-life of the precursors was about 2 hours. This mode of processing is analogous to the synthesis of legumin in legumes and globulin in oats. A third pair of disulfide-bonded proteins (41 and 23 kilodaltons) was synthesized from a precursor protein in several steps. These included a legumin-like cleavage, whereafter the subunits remained disulfide-bonded. Then, from the largest subunit, a part was cleaved off, probably a storage protein of 17 kilodaltons. This 17-kilodalton protein was not disulfide-bonded to the 41 and 23-kilodalton complex. The first processing step was fast, the second slow: The half-lives of the precursors were about 3 and 10 hours, respectively. Finally, a group of 16- and 17-kilodalton proteins was synthesized by cleavage of large precursor proteins, likely in two steps. After cleavage, the proteins were not disulfide-bonded. The half-life of the precursors was short, less than 1 hour. In addition, for the 38-, 23-, and one of the 17-kilodalton proteins, a small decrease of relative molecular weight was observed as a last processing step. This was likely due to deglycosylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.