Abstract

BackgroundMembers of the genus Rhodococcus are frequently found in soil and other natural environments and are highly resistant to stresses common in those environments. The accumulation of storage compounds permits cells to survive and metabolically adapt during fluctuating environmental conditions. The purpose of this study was to perform a genome-wide bioinformatic analysis of key genes encoding metabolism of diverse storage compounds by Rhodococcus jostii RHA1 and to examine its ability to synthesize and accumulate triacylglycerols (TAG), wax esters, polyhydroxyalkanoates (PHA), glycogen and polyphosphate (PolyP).ResultsWe identified in the RHA1 genome: 14 genes encoding putative wax ester synthase/acyl-CoA:diacylglycerol acyltransferase enzymes (WS/DGATs) likely involved in TAG and wax esters biosynthesis; a total of 54 genes coding for putative lipase/esterase enzymes possibly involved in TAG and wax ester degradation; 3 sets of genes encoding PHA synthases and PHA depolymerases; 6 genes encoding key enzymes for glycogen metabolism, one gene coding for a putative polyphosphate kinase and 3 putative exopolyphosphatase genes. Where possible, key amino acid residues in the above proteins (generally in active sites, effectors binding sites or substrate binding sites) were identified in order to support gene identification. RHA1 cells grown under N-limiting conditions, accumulated TAG as the main storage compounds plus wax esters, PHA (with 3-hydroxybutyrate and 3-hydroxyvalerate monomers), glycogen and PolyP. Rhodococcus members were previously known to accumulate TAG, wax esters, PHAs and polyP, but this is the first report of glycogen accumulation in this genus.ConclusionRHA1 possess key genes to accumulate diverse storage compounds. Under nitrogen-limiting conditions lipids are the principal storage compounds. An extensive capacity to synthesize and metabolize storage compounds appears to contribute versatility to RHA1 in its responses to environmental stresses.

Highlights

  • Members of the genus Rhodococcus are frequently found in soil and other natural environments and are highly resistant to stresses common in those environments

  • Key genes for PHA metabolism We searched the RHA1 genome for genes involved in PHA metabolism

  • In this study, we report the ability of R. jostii RHA1 to synthesize and accumulate different storage compounds, including poly(3HB-co-3-hydroxyvaleric acid (3HV)), TAG, wax esters, glycogen and polyP

Read more

Summary

Introduction

Members of the genus Rhodococcus are frequently found in soil and other natural environments and are highly resistant to stresses common in those environments. Members of the genus Rhodococcus are widely distributed in natural environments, such as soil, water and marine sediments [1]. They belong to the non-sporulating and mycolic acid-rich group within the actinomycetes, together with other related genera, including Mycobacterium, Nocardia, Corynebacterium and Gordonia. The complete genome of strain RHA1 is available for screening and identification of genes and metabolic pathways. For this reason, R. jostii RHA1 is a good model organism for understanding the genetics and physiology of storage compound metabolism. Strain RHA1 possesses one of the largest bacterial genomes sequenced to date, containing 9.7 Mbp arranged in a linear chromosome (7,802,028 bp) and three linear plasmids: pRHL1 (1,123,075 bp), pRHL2 (442,536 bp) and pRHL3 (332,361 bp) [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call