Abstract
Recently, majority of the studies were focusing on the nanoparticles (NPs) and their abilities of penetrating Stratum Corneum (SC), as they can be prominently utilized in the plastic surgeries. In the current work, we demonstrated the penetrating abilities of gold NPs (AuNPs) through anthropological skin with diameters of 10 and 15 nm, varying in sizes, with the help of Multiphoton Microscopy. In addition, we also demonstrated a rapid facile environment friendly process of synthesizing AuNPs of adjustable sizes with the help of aqueous M. lucida leaf extract. Surface plasmon resonance was performed to confirm the synthesis of AuNPs at 530 nm with the help of UV–vis spectrophotometer. By differentiating the quantities of M. lucida leaf aqueous extracts, we studied the reduction time, morphological differences and size of the AuNPs. By performing Fourier Transformation Infrared Spectroscopy (FTIR), UV–vis spectroscopy, Transmission Electron Microscopy (TEM), Powder X-ray Diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDAX) and Selected Area Electron Diffraction (SAED), we characterized the fabricated AuNPs. The further aggregation and growth of AuNPs was protected by the polyphenols in the oxidised form by having a coordination with the surface of AuNPs. Moreover, the experiments of skin penetration showed an effort to deeply examine the factors leading to the penetration of particles into the human skin. These responses indicate that NPs at the determined size ranges penetrate the SC in the same pattern of the drug molecules, mostly by the intercellular paths. These responses attained were essential for developing a unique transdermal transporter as well as for understanding the basic interaction of skin–NPs for the application of plastic surgeries.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.