Abstract

Abstract This study presents a novel process to synthesize curcumin nanoparticles from fresh turmeric. An ultrasonic-assisted cajeput oil in water emulsion technique was used to synthesize nanocurcumin. The prepared nanocurcumin was spherical with an average size of 47 nm and size distribution of 5–80 nm. The synthesized nanocurcumin showed improved aqueous-phase solubility, and it was used as a reducing agent and stabilizer for biosynthesizing silver nanoparticles. Furthermore, the X-ray diffraction pattern of the silver nanoparticles showed four distinct diffraction peaks at 38.3°, 44.6°, 65.1°, and 78.1° corresponding to the lattice planes of face-centered cubic silver ((111), (200), (220), and (311)). Transmission electron microscopy analysis indicated the average size and maximum size distribution (80 %) of the silver nanoparticles were 10.9 nm and 5–15 nm, respectively. UV–visible spectroscopy measurement of samples indicated the localized surface plasmon resonance absorbance of an aqueous dispersion of silver nanoparticles at 406 nm. Zeta potential analysis revealed a negative charge with a magnitude of −27.2 mV, which indicated higher aqueous dispersion stability of the silver nanoparticles prepared from nanocurcumin. The nanoparticles showed antibacterial activity against Vibrio parahaemolyticus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.