Abstract
In this work, we described a cost-effective and environmentally friendly technique for green synthesis of colloidal silver nanoparticles from aqueous extract of fresh leaves of Acacia melanoxylon and its application as a dopamine and hydrogen peroxide sensor. The prepared silver nanoparticles were characterized by UV-Visible absorption spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), zeta-potential analysis, thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), etc. This method was found to be cost-effective, eco-friendly when compared to that of chemical and physical methods of nanoparticle synthesis. Silver nanoparticles modified carbon paste electrode (CPE) was fabricated for the detection of dopamine and hydrogen peroxide. The fabricated electrode showed an excellent sensitivity towards the oxidation of both dopamine (DA) and hydrogen peroxide (H2O2) in 0.1M phosphate buffer (PBS) solution at a pH 7. The effect of the scan rate, the concentration of the modifier and the analyte were studied by the cyclic voltammetric technique. The result exhibits good electrocatalytic activity, diffusion-controlled process and linear increase in peak current with different concentrations of dopamine and hydrogen peroxide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.