Abstract

Background: Biofuels produced from trans-esterification of high lipid content in microalgae represent a promising alternative renewable source of energy to the limited and depleted global fossil fuel reservoir. The most critical step in such a process is the harvesting of algal cells. Objective: We aimed to improve the current methodology for microalgae harvesting via utilizing biosynthesized silver nanoparticles (AgNPs) from Synechocystis sp. ElfSCS31 as an eco-friendly, stable, and affordable flocculant agent. Methods: AgNPs were prepared by the green synthesis method using the alcoholic extract of Synechocystis sp. ElfSCS31. The synthesized nanoparticles were characterized by Zeta sizer, X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), and UV-Vis Spectroscopy. Biosynthesised AgNPs were applied for harvesting 20 microalgae strains, and then, harvesting efficiency was determined by UV Spectrophotometry. Results: Our results revealed an average size of polydispersed nanoparticles ranging from 10 to 100 nm for prepared AgNPs and the potential of 1.78 mV, with an average crystallite size of 22 nm. Biosynthesised AgNPs exhibited harvesting efficiency towards different strains of microalgae, which reached 97% in some strains as in Chlorella lobophora and Chlorococcum oleofaciens. Conclusion: The presented study introduces a feasible strategy using biosynthesized AgNPs as a flocculant agent to harvest different strains of microalgae at normal growth conditions of light and temperature. Our developed method could replace the classical high-cost step of harvesting that leads to unravelling the full potential of microalgae as a promising and fascinating source for biofuels production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call