Abstract
Haemophilus ducreyi is a Gram-negative bacterium that causes chancroid, a sexually transmitted disease. Cell surface lipooligosaccharides (LOS) of H. ducreyi are thought to play important biological roles in host infection. The vast majority of H. ducreyi strains contain high levels of sialic acid (N-acetylneuraminic acid, NeuAc) in their LOS. Here we investigate the biosynthetic origin of H. ducreyi sialosides by metabolic incorporation studies using a panel of N-acylmannosamine and sialic acid analogues. Incorporation of sialosides into LOS was assessed by matrix-assisted laser desorption and electrospray ionization mass spectrometry. A Fourier transform ion cyclotron resonance mass spectrometer provided accurate mass measurements, and a quadrupole time-of-flight instrument was used to obtain characteristic fragment ions and partial carbohydrate sequences. Exogenously supplied N-acetylmannosamine analogues were not converted to LOS-associated sialosides at a detectable level. In contrast, exogenous (13)C-labeled N-acetylneuraminic acid ([(13)C]NeuAc) and N-glycolylneuraminic acid (NeuGc) were efficiently incorporated into LOS in a dose-dependent fashion. Moreover, approximately 1.3 microM total exogenous sialic acid was sufficient to obtain about 50% of the maximum production of sialic acid-containing glycoforms observed under in vitro growth conditions. Together, these data suggest that the expressed levels of sialylated LOS glycoforms observed in H. ducreyi are in large part controlled by the exogenous concentrations of sialic acid and at levels one might expect in vivo. Moreover, these studies show that to properly exploit the sialic acid biosynthetic pathway for metabolic oligosaccharide engineering in H. ducreyi and possibly other prokaryotes that share similar pathways, precursors based on sialic acid and not mannosamine must be used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.