Abstract

A procedure for the preparation of a cell-free enzyme solution from rice leaves capable of catalyzing the biosynthesis of diterpene hydrocarbons from geranylgeranyl pyrophosphate or copalyl pyrophosphate as added substrates has been developed. The rates of synthesis of a group of “pimaradiene-like” diterpene hydrocarbons are about 75-fold higher with geranylgeranyl pyrophosphate as substrate and about 8-fold higher with copalyl pyrophosphate as substrate in comparison with extracts from untreated control leaves. The maximum rate of diterpene hydrocarbon biosynthesis is seen in extracts prepared at 40 h after uv irradiation. Five diterpene hydrocarbons (compounds A-E) were present in the hydrocarbon fraction biosynthesized from [ 3H]geranyl-geranyl pyrophosphate in large-scale incubation mixtures prepared from uv-treated rice leaves. Three of these diterpenes were identified as ent-kaur-16-ene (B), ent-sandaracopimara-8(14),15-diene (D), and 9βH-pimara7,15-diene (E) from GC retention times and GC-MS spectral characteristics in comparison with those of authentic reference compounds. Compound C has spectral characteristics analogous to those of a pimaradiene, but a specific structural assignment from the data available was not possible. Similar incubations with [ 3H]copalyl pyrophosphate as the substrate and enzyme prepared from uv-treated rice leaves produced ent-kaurene (B), ent-sandaracopimara-8(14),15-diene (D), and compound C, but not 9βH-pimara-7,15-diene (E). These results are consistent with a proposed biosynthetic scheme in which 9βH-pimara-7,15-diene serves as a precursor of the momilactone family, and ent-sandaracopimara-8(14),15-diene serves as a precursor of the oryzalexin family of rice phytoalexins. ent-Kaurene was the only diterpene detected in incubation mixtures containing enzyme extract from untreated rice leaves and [ 3H]copalyI pyrophosphate as the substrate. It is suggested that kaurene biosynthesis in rice leaves is probably associated with gibberellin biosynthesis and the regulation of vegetative growth rather than stress metabolism. The diterpene cyclization enzymes in extracts of uv-treated rice leaves show only a relatively modest inhibition by the plant growth retardants AMO-1618 and Phosfon D. No evidence was obtained for the subcellular localization of these cyclization enzymes in organellar preparations; it is tentatively concluded that the enzymes are present predominantly in the extraorganellar cytoplasm of rice leaves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.