Abstract

Resveratrol (RES) is a secondary metabolite synthesized by plants in response to environmental stress and pathogen infection, which is of great significance for the industrial production of RES by fermentation culture. In this study, we aimed to explore the biosynthesis pathway of RES and its key enzymes in the Priestia megaterium PH3, which was isolated and screened from peanut fruit. Through Liquid Chromatography-Mass Spectrometry (LC-MS) analysis, we quantified the RES content and distribution in the culture medium and determined that Priestia megaterium PH3 mainly secreted RES extracellularly. Furthermore, the highest production of RES was observed in YPD, yielding an impressive 127.46 ± 6.11 μg/L. By optimizing the fermentation conditions, we achieved a remarkable RES yield of 946.82 ± 24.74 μg/L within just 2 days, which represents the highest reported yield for a natural isolate produced in such a short time frame. Our investigation revealed that the phenylpropane pathway is responsible for RES synthesis in this bacterium, with cinnamate 4-hydroxylase (C4H) identified as the main rate-limiting enzyme. Overall, our findings highlight the robust RES production capabilities of Priestia megaterium PH3, offering novel insights and potential applications for bacterial fermentation in RES production. KEY POINTS: • RES synthesized by the bacterium was confirmed through the phenylpropane pathway. • The key rate-limiting enzyme for biosynthesis-RES is C4H. • RES reached 946.82 ± 24.74 μg/L after fermentation for 2 days.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.