Abstract
Theophylline and 1-methyl-3-isobutylxanthine (MIX), compounds that block eicosanoid formation and modulate phospholipase A2 activity, inhibited in a dose-dependent manner the formation of both leukotriene B4 (LTB4) and platelet-activating factor (PAF) by human polymorphonuclear leucocytes (PMN) in response to ionophore A23187. Theophylline and MIX lacked any inhibitory effect on acetyl-CoA: lyso-PAF acetyltransferase activity, which is the rate-limiting step for PAF biosynthesis in PMN. The effect of theophylline and MIX on PAF formation could be reversed by incubating the cells in the presence of 1-10 microM exogenous lyso-PAF. Incubation of PMN homogenates in the presence of unsaturated non-esterified fatty acids resulted in dose-dependent inhibition of the acetyltransferase. This effect was linked to the presence of a free carboxyl group, since both arachidonic acid methyl ester and palmitoyl-arachidonoyl phosphatidylcholine lacked inhibitory activity. This inhibitory effect was also dependent on the number of double bonds, since arachidonic acid (C20:4) and eicosapentaenoic acid (C20:5) displayed maximal effect. Kinetic analysis showed that the effect of arachidonic acid was consistent with competitive inhibition, with a Ki value of about 19 microM. Oxidative metabolites of arachidonic acid showed a lesser inhibitory effect with the following order of potency: arachidonic acid greater than 15-HETE (15-hydroxy-6,8,11,14-eicosatetraenoic acid) greater than LTB4 greater than 5-HETE (5-hydroxy-6,8,11,14-eicosatetraenoic acid) greater than lipoxin A4. Examination of enzymes involved in CoA-dependent acylation revealed a low activity of both arachidonoyl-CoA synthetase and arachidonoyl-CoA: lyso-PAF arachidonoyltransferase. These data indicate a strong influence on PAF biosynthesis of the products of the phospholipase A2 reaction, with lyso-PAF disposal being a critical event for PAF formation, and unsaturated fatty acids acting as feed-back inhibitors. The conversion of arachidonic acid via oxidative metabolism into less active inhibitors of acetyl-CoA:lyso-PAF acetyltransferase seems to be an additional mechanism of modulation of this enzyme activity, linked to the function of lipoxygenases. Finally, the enzyme activities involved in arachidonoyl-CoA-dependent acylation of lyso-PAF show a low efficiency in capturing arachidonic acid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.