Abstract
Saponins are ubiquitous plant natural products, essentially involved in plant defense against biotic stresses, with numerous pharmaceutical and agricultural applications. The common precursor for triterpenoid saponins is squalene (30 carbon molecule) which, via cationic intermediates, is oxidized to 2,3-oxidosqualene. After cyclization, the basic triterpenoid cyclic structure undergoes oxidation by monoxygenases and glycosylations of hydroxyl groups. Chemical synthesis of saponins essentially recapitulates the main biosynthetic steps. However, to date, plants are the most viable source of these molecules. Jasmonic or salicylic acid, as well as their respective methylated derivatives, are important signaling molecules in the responses culminating in triterpenoid saponin production. The current challenges to improve triterpenoid saponin production include a better understanding of the signal transduction pathways leading to their accumulation (with emphasis on late enzymes and “master” regulatory transcription factors), isolation and heterologous expression of biosynthetic genes, and structural and modeling studies of biosynthetic enzymes and their catalytic mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.