Abstract

1. Radioactivity from l-[Me-(14)C,(3)H]methionine is incorporated into phylloquinone, plastoquinone, gamma-tocopherol, alpha-tocopherol, alpha-tocopherolquinone and ubiquinone in maize shoots. 2. Comparative studies with other terpenoids (squalene and beta-carotene) and chemical degradation of selected quinones (ubiquinone and plastoquinone) established that all the radioactivity is confined to nuclear methyl substituents. 3. In ubiquinone 76% of the radioactivity is in the methoxyl groups and 24% in the ring C-methyl group. 4. Taking the phytosterols as an internal reference and accepting the atomic ratio of (14)C/(3)H transferred from l-[Me-(14)C,(3)H]methionine to the supernumerary group at C(24) to be 1:2 the ratio of all the quinones and chromanols examined approached 1:3. After allowing for the fact that for plastoquinone, gamma-tocopherol, alpha-tocopherol and alpha-tocopherolquinone one nuclear methyl group is formed from the beta-carbon of tyrosine, these results show that one nuclear C-methyl group for phylloquinone, plastoquinone and gamma-tocopherol, two nuclear methyl groups for alpha-tocopherol and alpha-tocopherolquinone and one nuclear methyl and two methoxyl groups for ubiquinone are formed by the transfer of intact methyl groups from methionine. 5. From a comparison of the incorporation of (14)C radioactivity into these compounds it would appear that the methylation reactions involved in phylloquinone and plastoquinone biosynthesis take place in the chloroplast, whereas those involved with ubiquinone biosynthesis occur else-where within the cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.