Abstract

PF1022A belongs to a recently identified class of N-methylated cyclooctadepsipeptides (CODPs) with strong anthelmintic properties. Described here is the cell-free synthesis of this CODP and related structures, as well as the purification and enzymatic characterization of the responsible synthetase. For PF1022A synthesis extracts of Mycelia sterilia were incubated with the precursors L-leucine, D-lactate, D-phenyllactate, and S-adenosyl-L-methionine in the presence of ATP and MgCl(2). A 350-kDa depsipeptide synthetase, PFSYN, responsible for PF1022A synthesis was purified to electrophoretic homogeneity. Like other peptide synthetases, PFSYN follows a thiotemplate mechanism in which the substrates are activated as thioesters via adenylation. N-Methylation of the substrate L-leucine takes place after covalent binding prior to peptide bond formation. The enzyme is capable of synthesizing all known natural cyclooctadepsipeptides of the PF1022 type (A, B, C, and D) differing in the content of D-lactate and D-phenyllactate. In addition to PF1022 types A, B, C, and D, the in vitro incubations produced PF1022F (a CODP consisting of D-lactate and N-methyl-L-leucine), as well as di-, tetra-, and hexa-PF1022 homologs. PFSYN strongly resembles the well documented enniatin synthetase in size and mechanism. Our results suggest that PFSYN, like enniatin synthetase, is an enzyme with two peptide synthetase domains and forms CODP by repeated condensation of dipeptidol building blocks. Due to the low specificity of the d-hydroxy acid binding site, D-lactate or D-phenyllactate can be incorporated into the dipeptidols depending on the concentration of these substrates in the reaction mixture.

Highlights

  • Purification and Characterization of PFSYNC-terminal to domain EB is a third phosphopantetheine that acts as a waiting position for biosynthetic intermediates, similar to fatty acid synthase

  • PF1022A belongs to a recently identified class of N-methylated cyclooctadepsipeptides (CODPs) with strong anthelmintic properties

  • The PF1022 anthelmintics are related to bassianolide, which is an insecticidal metabolite from the fungus Beauveria bassiana (5), and to the enniatins, a class of N-methylated cyclohexadepsipeptides produced by Fusarium species with manifold biological activities (6, 7)

Read more

Summary

Purification and Characterization of PFSYN

C-terminal to domain EB is a third phosphopantetheine that acts as a waiting position for biosynthetic intermediates, similar to fatty acid synthase. Enniatin synthesis is an iterative process in which the depsipeptide chain is formed by successive condensations of dipeptidol building blocks (10). No information on the biosynthesis of cyclooctadepsipeptides like PF1022A and bassianolide has been available so far, whereas the biosynthesis of enniatins is well established (8, 9, 13, 14). We report the cell-free synthesis of PF1022A and related cyclooctadepsipeptides and the purification and characterization of the responsible N-methyl-cyclooctadepsipeptide synthetase PFSYN

EXPERIMENTAL PROCEDURES
Crude extract Polyethyleneimine precipitation Hydrophobic chromatography mg
RESULTS
DISCUSSION
Mass peak
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call