Abstract

We examined the potential role of a guanine nucleotide-binding protein in the biosynthesis of paf-acether (paf) and the release of beta-hexosaminidase during antigenic stimulation of cultured mouse bone marrow-derived mast cells. Unlike pertussis toxin, cholera toxin treatment enhanced the antigen-stimulated production of paf and calcium mobilisation without affecting acetyltransferase activation and cell degranulation. The level of intracellular cAMP doubled in cholera toxin-treated cells. Our data suggest that a cholera toxin-sensitive guanine nucleotide-binding protein is involved in the IgE receptor-mediated signal transduction leading to paf production most probably at the level of Ca2+ influx.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call