Abstract

The biosynthesis of the mustard oil glucoside, benzylglucosinolate, was studied in Tropaeolum majus L. A number of labeled compounds were administered to plant shoots and the incorporation of tracer into benzylglucosinolate, isolated as the crystalline tetramethyl-ammonium salt, was measured. In order of decreasing efficiency of conversion into benzyl-glucosinolate the compounds fed were S-(beta-d-glucopyranosyl)phenylacetothiohydroximic acid (desulfobenzylglucosinolate), sodium phenylacetothiohydroximate, dl-phenylalanine, d-glucose, and sodium-d-1-glucopyranosyl mercaptide (1-thioglucose). The results are consistent with the hypothesis that the thioglucosyl group of benzylglucosinolate is derived by glucosylation of phenylacetothiohydroximate and not from 1-thioglucose. The results also suggest that benzylglucosinolate is formed by sulfation of desulfobenzylglucosinolate as the final step in its biosynthesis.A method for the isolation of a number of glucosinolates (mustard oil glucosides) is described which utilizes anion exchange chromatography on diethylaminoethyl (DEAE) cellulose. Potassium allylglucosinolate, tetramethylammonium benzylglucosinolate, potassium 2-hydroxy-2-phenylethylglucosinolate and potassium 2-phenylethylglucosinolate were obtained on recrystallization of the glucosinolate fraction eluted from the column.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.