Abstract

Structural differences have been reported in the glycosylation patterns of cystic fibrosis glycoproteins. Although the gene mutated in cystic fibrosis (CFTR) has been cloned and characterized as a chloride channel, its relationship to the highly viscous mucus and structural glycoprotein and mucin abnormalities in cystic fibrosis still remains to be defined. We have evaluated O-glycan biosynthesis in CHO and BHK cells that express CFTR and DeltaF508 CFTR as in vitro models, and utilized the cftr knockout mouse as an in vivo model of CFTR dysfunction. Activities of glycosyltransferases and sulfotransferases synthesizing mucin type O-glycan chains were determined in these models. Differences in transferase activity levels were found between tissues and cell types and during mouse development. No specific patterns of activities were associated with the lack of CFTR or with DeltaF508CFTR expression. This suggests that it is not the presence or absence of normal CFTR, or the presence of mutant CFTR alone, but rather cell specific additional factors or pathophysiological consequences that determine the changes in mucin glycosylation in cystic fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call