Abstract

The synthesis of mouse erythrocyte membrane proteins by Friend erythroleukemia cells during dimethyl sulfoxide-induced differentiation was studied. Untreated and dimethyl sulfoxide-treated cells were incubated with l-[ 3H] leucine and the incorporation of radioactivity into total trichloroacetic acid-insoluble proteins and into proteins immunoprecipitated with a multivalent rabbit antibody to mouse erythrocyte membranes was determined. The immunoprecipitated membrane proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and radioactivity was detected by fluorography. The incorporation of l-[ 3H]leucine into total cell proteins was linear for 20 min in both untreated and treated cells. Exposure of the cells to dimethyl sulfoxide had an inhibitory effect on protein synthesis, with a significant decrease noted on the fourth day of treatment and a continued decline occurring until the seventh day when protein synthesis was 42% that of untreated cells. The synthesis of erythrocyte membrane proteins was 0.49% that of total cell proteins in untreated cells, was increased to 1.27% by the third day of treatment and remained at about 1% of total protein synthesis from the fourth to the seventh day. Untreated cells synthesized low levels of spectrin, bands 5 and 6 proteins. Treatment with dimethyl sulfoxide caused a staggered increase in synthesis of a number of erythrocyte membrane proteins. Spectrin synthesis increased 4-fold by the third day of treatment and declined thereafter. The synthesis of membrane proteins with electrophoretic mobilities similar to bands 3 and 4 was increased 2–3-fold by the fourth day, while bands 6 and 5 proteins attained maximal synthesis (4-fold) on the fifth and sixth days of treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call