Abstract
Enzymes from Salvia officinalis and Tanacetum vulgare leaf epidermis catalyze the conversion of the acyclic precursor geranyl pyrophosphate to the cyclic monoterpenes (+)- and (-)-bornyl pyrophosphate, respectively. The antipodal cyclizations are considered to proceed by the initial isomerization of the substrate to the respective bound tertiary allylic intermediates (-)-(3R)- and (+)-(3S)-linalyl pyrophosphate. [(3R)-8,9-14C,(3RS)-1E-3H] Linalyl pyrophosphate (3H:14C = 5.22) was tested as a substrate with the cyclases from both sources to determine the configuration of the cyclizing intermediate. This substrate yielded (-)-bornyl pyrophosphate with 3H:14C ratio greater than 31, indicating specific utilization of (+)-(3S)-linalyl pyrophosphate as predicted. With the (+)-bornyl pyrophosphate cyclase, the 3H:14C ratio of the product was about 4.16, indicating a preference for the (-)-(3R)-enantiomer, but the ability also to utilize (+)-(3S)-linalyl pyrophosphate. (3R)- and (3S)-[1Z-3H]Linalyl pyrophosphate were separately compared to the achiral precursors [1-3H] geranyl pyrophosphate and [1-3H]neryl pyrophosphate (cis-isomer) as substrates for the cyclizations. All functional precursors afforded optically pure (-)-(1S,4S)-bornyl pyrophosphate with the T. vulgare-derived cyclase (as determined by chromatographic separation of diastereomeric ketals of the derived ketone camphor), and (+)-(3S)-linalyl pyrophosphate was the preferred substrate. With the (+)-bornyl pyrophosphate cyclase from S. officinalis, geranyl, neryl, and (-)-(3R)-linalyl pyrophosphates gave the expected (+)-(1R,4R)-stereoisomer as the sole product, and (-)-(3R)-linalyl pyrophosphate was the preferred substrate. However, (3S)-linalyl pyrophosphate yielded (-)-(1S,4S)-bornyl pyrophosphate, albeit at lower rates, indicating the ability of this enzyme to catalyze the anomalous enantiomeric cyclization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Biological Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.