Abstract

Plant secondary metabolites play a major role in biosynthesis of nanoparticles. As a new approach, we have used aqueous ethanolic extract of Cyathea nilgirensis Holttum to synthesize MgO nanoparticles by chemical precipitation method. FT-IR spectroscopy studies have proved that biomolecules have acted as stabilizing agents in the synthesis of MgO nanoparticle. SEM analysis has exhibited the morphological appearance of MgO nanoparticles. Energy Dispersive X-Ray analysis has proved the presence of both magnesium and oxygen in the synthesized MgO nanoparticles. The fungal species A. niger is observed to have remarkably higher percentage of inhibition (71.4%). The results of cancer studies suggest that as concentration increases from 10 μg to 200 μg, the percentage of inhibition of MgO nanoparticles increases. Thus plant extract mediated MgO nanoparticles have proven to be a better antimicrobial and anticancer agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call