Abstract
G protein-coupled receptors, like many other membrane proteins, are notoriously difficult to synthesize in conventional cellular systems. Although expression in insect cells is considered the preferred technique for structural characterizations in particular, inefficient membrane translocation, instability, toxic effects and low yields still pose clear limitations for their production in living cells. Recent studies started to explore alternative strategies for the in vitro production of problematic membrane proteins in cell-free lysates in combination with supplied membranes. We provide a detailed study on the production efficiencies and quality of G protein-coupled receptors, Fab fragments and other proteins synthesized in insect cell lysates containing endogenous microsomes. Effects of different reaction kinetics, redox conditions and sample preparations on the specific activities of synthesized proteins have been analyzed. The extent of glycosylation, membrane translocation and percentages of ligand binding active fractions of synthesized protein samples have been determined. We provide strong evidence that membrane insertion of integral membrane proteins can represent a prime limiting factor for their preparative scale in vitro production. Improved expression protocols resulting into higher production rates yielded more active protein in case of Fab fragments, but not in case of the human endothelin B receptor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.