Abstract

The present study deals with the biosynthesis of magnesium oxide nanoparticles using the Hagenia abyssinica female flower aqueous extract. The prepared MgO NPs were characterized by visual observation, UV–Vis, XRD, FTIR, and SEM studies. Optimum parameters such as plant extract volume (25 mL), temperature (60 ℃), pH (12), precursor concentration (1 mM), reaction time (120 min), and the formation of the MgO NPs in the colloidal solution were monitored by a UV–Vis spectrophotometer. XRD patterns of MgO NPs confirmed the face-centered cubic structure and average crystallite size of NPs at 12.8 nm. The FTIR spectra depicted a peak at 407 cm−1, which corresponds to the stretching vibration of MgO and is the characteristic peak for MgO NPs. SEM confirms spherical morphology, and the overall size of MgO NPs ranges from 10 to 40 nm. The antibacterial activity of synthesized MgO NPs was determined by the agar-well-diffusion method, which found that nanoparticles have significant antibacterial activity zone of inhibition against Staphylococcus aureus (27 ± 0.28 mm) and against Escherichia coli (15 ± 0 mm).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call