Abstract

l-Histidine plays significant roles in the food and pharmaceutical industries, and its demand has been steadily increasing recently. As demand for l-histidine continues, the development of eco-friendly processes is required. To pursue this goal, D-galactose, a primary component of red algae, was employed as a carbon source for synthesizing l-histidine. To harness this marine biomass, κ-carrageenan was preferentially hydrolyzed to obtain D-galactose using κ-carrageenase (CgkA) and iduronate-2-sulfatase (IdsA3). Subsequently, l-histidine production was enhanced by modifying precursor pathways in Corynebacterium glutamicum. The resulting strain, TDPH6 exhibited a remarkable 2.15-fold increase in l-histidine production compared to TDP. Furthermore, a galactose utilization system was introduced and named TDPH6G2. During fermentation, this strain efficiently consumed 100 % of the D-galactose and synthesized 0.395 g/L of l-histidine. In conclusion, this study presents a sustainable approach to L-histidine synthesis by introducing a galactose utilization system into C. glutamicum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call