Abstract

Human pathogenic diseases are on the rampage in the list of debilitating diseases globally. The endless quest to salvage this menace through various therapies via innocuous agents is essential to overcome these drug-resistant pathogens. This study engaged a benign, facile, biocompatible, cost-effective and eco-friendly approach to synthesized iron oxide nanoparticles (FeO-NPs) via a composite of Psidium guavaja-Moringa oleifera (PMC) leaf extract to address six most debilitating bacterial strain in vitro as an antibacterial agent. Physicochemical analysis of PMC formed nanoparticles (PMC_NPs) was effectuated through Fourier Transform Infrared Spectroscopy (FT-IR), UV–Visible Spectroscopy, X-ray Diffraction Spectroscopy (XRD), Transmission Electron Microscopy (TEM), and Vibrating Sample Magnetometer (VSM). The PMC_NPs inhibited the growth of six human pathogens with higher activity at lower concentrations. It is noteworthy from our observations that, the bacterial strains show functional susceptibility to the PMC_NPs at lower concentrations compared to the orthodox antibacterial drugs. Photocatalytic degradation was observed with a decrease in the absorbance of Methylene blue dyes with the help of PMC_NPs apropos irradiation time under visible light irradiation. Consequently, PMC_NPs serve as an enhanced substitute for the orthodox antibacterial drugs in therapeutic biomedical field sequel to its pharmacodynamics against the bacterial strains at lower concentrations and also serves as a good component for water purification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.