Abstract

The synthesis of magnetic Hematite nanoparticles (α-Fe2O3) via green route has been a long lasting challenge for the scientific and technological fascination of many researchers. In the present investigation, iron oxide nanoparticles (α-Fe2O3) were synthesized using Rheum emodi roots in a cost effective and ecofriendly method. Their physicochemical property orchestration involved techniques such as UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray (EDX), X-ray diffraction (XRD), Thermogravimetric Analysis (TGA), Vibrating sample magnetometer (VSM), and Atomic force microscopy (AFM). Through TEM, FESEM and AFM analysis, α-Fe2O3NPs were confirmed spherical in shape and the average diameter of particle is ~12 nm as depicted through TEM image. Thermal property was investigated by TGA. Magnetic behavior was observed in R. emodi mediated α-Fe2O3NPs by magnetic hysteresis measurements. FTIR analysis revealed the presence of anthraquinones in R. emodi roots extract which play the central role in stabilization of the α-Fe2O3NPs. Further, the crystalline nature of the nanoparticle sample was determined with XRD experiment and SAED fringes calculation. The crystal was also confirmed with Rietveld refinement of XRD profile fitted with R-3c model Additionally, magnetic interaction with bacterial cell wall showed antimicrobial property against Escherichia coli, Gram-negative and Staphylococcus aureus, Gram-positive species. The approach transcribed in this paper reveals a novel methodology that utilizes α-Fe2O3 NPs to initiate apoptosis and inhibition of cervical cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call