Abstract

AbstractNonribosomal peptide synthetases (NRPSs) can incorporate nonproteinogenic amino acids into peptidyl backbones to increase structural diversity. Genome mining of Schlegelella brevitalea led to the identification of a class of linear lipoheptapeptides, glidomides, featuring two unusual residues: threo‐β‐OH‐L‐His and threo‐β‐OH‐D‐Asp. The β‐hydroxylation of Asp and His is catalyzed by the nonheme FeII/α‐ketoglutarate‐dependent β‐hydroxylases GlmD and GlmF, respectively. GlmD independently catalyzes the hydroxylation of L‐Asp to primarily produce threo‐β‐OH‐L‐Asp on the thiolation domain, and then undergoes epimerization to form threo‐β‐OH‐D‐Asp in the final products. However, β‐hydroxylation of His requires the concerted action of GlmF and the interface (I) domain, a novel condensation domain family clade. The key sites of I domain for interaction with GlmF were identified, suggesting that the mechanism for hydroxylation of His depends on the collaboration between hydroxylase and NRPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.