Abstract

Building blocks with amine functionality are crucial in the chemical industry. Biocatalytic syntheses and chemicals derived from renewable resources are increasingly desired to achieve sustainable production of these amines. As a result, renewable materials such as furfurals, especially furfurylamines like 5-(hydroxymethyl)furfurylamine (HMFA) and 2,5-di(aminomethyl)furan (DAF), are gaining increasing attention. In this study, we identified four different amine transaminases (ATAs) that catalyze the reductive amination of 5-(hydroxymethyl)furfural (HMF) and 2,5-diformylfuran (DFF). We successfully immobilized these ATAs on glutaraldehyde-functionalized amine beads using multiple binding and on amine beads by site-selective binding of the unique Cα-formylglycine within an aldehyde tag. All immobilized ATAs were efficiently reused in five repetitive cycles of reductive amination of HMF with alanine as co-substrate, while the ATA from Silicibacter pomeroyi (ATA-Spo) also exhibited high stability for reuse when isopropylamine was used as an amine donor. Additionally, immobilized ATA-Spo yielded high conversion in the batch syntheses of HMFA and DAF using alanine (87% and 87%, respectively) or isopropylamine (99% and 98%, respectively) as amine donors. We further demonstrated that ATA-Spo was effective for the reductive amination of HMF with alanine or isopropylamine in continuous-flow catalysis with high conversion up to 12 days (48% and 41%, respectively).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.