Abstract

Introduction: Glucuronidation by the uridine diphosphate glucuronosyltransferases (UGTs) plays a pivotal role in the clearance mechanism of both xenobiotics and endobiotics. The detection of glucuronides at low micromolar concentrations is required to accurately model in vitro enzyme kinetics and in vivo pharmacokinetics. However, relatively few glucuronides are currently available as standards for developing liquid chromatography and mass spectroscopy (LC/MS) bioanalytical methods. Methods: The glucuronidation capacity of hepatic microsomes prepared from rat (RLM), dog (DLM), monkey (MLM), and human (HLM) was examined for five xenobiotic substrates. In each case, glucuronide standards were produced using the enzyme source most efficient for the production of that specific glucuronide. Results: Dog hepatic microsomes were used to produce glucuronides for anthraflavic acid (yield: 14 mg), buprenorphine (yield: 14 mg), and octylgallate (total yield: 13 mg), whereas propofol glucuronide (yield: 20 mg), and ethinylestradiol glucuronide (yield: 8 mg) were prepared using HLM. All glucuronides were characterized by LC/MS/MS and nuclear magnetic resonance (NMR) spectroscopy. Discussion: The multimilligram quantities of glucuronide standards produced by this method have many applications throughout drug discovery and toxicology. In addition to allowing the quantification of glucuronide formation from in vitro and in vivo studies, the authentic standards produced could also be used to assess potential pharmacological or toxicological effects of metabolites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.