Abstract

Copper(II) oxide nanoparticles (CuO NPs) has a wide range of applications as catalysts. The natural abundance of copper and its relatively low cost make it a viable alternative to catalysts made from expensive precious metals such as platinum and palladium. In this study, a rapid, simple and green method was developed for the synthesis of CuO NPs using an aqueous extract of Murayya koenigii leaves. Several parameters were optimized, namely, the volume of leaf extract, pH, reaction temperature and reaction time. The optimum condition for the biosynthesis was obtained by using 3 mL of leaf extract; 10 mL of 5 mM CuSO, at pH 11, at room temperature. The biosynthesis was completed within 50 minutes. The synthesized CuO NPs were characterized using Ultraviolet-visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Transmission Electron Microscope (TEM) analyses. The UV-Vis absorption spectra confirmed the formation of CuO NPs with characteristic peak at 634 nm. The FTIR spectroscopic analysis of the biosynthesized CuO NPs confirmed the surface adsorption of the bioactive components in the leaf extract that acted as the reducing agent and stabilizing agent for the metal nanoparticles. XRD analysis showed a series of diffraction peaks at 2θ of 32.5°, 35.5°, 38.6°, 48.8°, 53.4°, 58.1°, 61.5°, 66.3°, 68.0°, 72.4° and 75.0°, corresponding to (110), (002), (111), (202), (020), (202), (113), (311), (220), (311) and (222) respectively. From TEM images, CuO NPs were of spherical shape with a mean diameter of 8.4 nm. The biosynthesized CuO NPs demonstrated good catalytic activities on the reduction 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of sodium borohydride, NaBH4 and can be reused three times without significant decrease in the catalytic activities

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.