Abstract

<b>Background and Objective:</b> Green chemistry approach is a simple, eco-friendly, less toxic, cost-effective and biological method. <i>Phoenix dactylifera </i>seed extract has been used as a reducing and capping agent for the green synthesis of copper oxide nanomaterials. This approach had forewarned the interest in researching natural waste products to increase the usage of alternative therapies for infectious diseases. The present investigation determined the production of biogenic copper oxide nanomaterials using the seeds of date fruits (<i>Phoenix dactylifera </i>L.) by green approaches and an eco-friendly process. <b>Materials and Methods:</b> Extract of seeds of date fruits acted as potential and effective bio capping and reductant agents for bio-synthesis of copper oxide nanoparticles. The properties of biogenic copper oxide nanomaterials were assessed and characterized by the FT-IR, SEM, EDX, XRD and TGA analysis. <b>Results:</b> All the characterization results were confirming that produced copper oxide nanomaterials are spherical in shape with a size of 30±6 nm. Synthesized copper oxide nanomaterials are highly pure forms and resistant to high temperatures. Further, the antibacterial activity of green synthesized copper oxide nanomaterials against human bacterial pathogens was evaluated by the agar well diffusion method. The maximum zone of inhibition was obtained in <i>E. coli</i> as compared to the positive control (tetracycline). <b>Conclusion:</b> The results of the antibacterial assay indicate that biogenic copper oxide nanomaterials should be considered as an antibacterial agent for the treatment and prevention of infectious diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.