Abstract
The present study was aimed to use the aqueous extract of Capparis spinosa to synthesize the copper nanoparticles and also evaluated their antibacterial activities again some pathogenic bacterial strains. UV-vis spectroscopy analyses, fourier transform of infrared (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) were used to identify the synthesized nanoparticles. The antimicrobial activity of the synthesized copper nanoparticles was investigated using disk diffusion method and broth microdilution against some Gram-positive and Gram-negative bacteria. After adding the extract to the copper sulfate solution, the color of the solution changed from light blue to yellowish green. Existence of a maximum peak at the wavelength of 414 nm confirmed the formation of the copper nanoparticles. FTIR spectrum analysis showed that the factor groups created a coating extract on the surface of the nanoparticles. Scanning electron microscopy demonstrated the particle size between 17 and 41 nm. These findings showed that Staphylococcus aureus and Bacillus cereus as Gram-positive bacteria were most susceptible to synthesized copper nanoparticles in comparison with the Gram-negative bacteria (Klebsiella pneumoniae, and Escherichia coli). The obtained findings demonstrated that the aqueous extract of C. spinosa acts as a reviver and stabilizer factor. The synthesized copper nanoparticles demonstrated activity against both Grampositive and Gram-negative bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.